

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augus	st 29, 2000	Page 1

STS-106

Flight Readiness Review

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augu	st 29, 2000	Page 2

Approach and General Description

SR&QA held reviews in preparation for the STS-106 Flight Readiness Review on 14 August and 24 August 2000 and is ready to proceed toward launch countdown.

FRR Briefing OVerview

- Significant assessments discuss
- Special topics
 - NASA Safety Reporting System (NSRS) discuss
 - Hazard Analysis discuss
 - Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) - discuss
- Significant Open work none
- CoFR Exceptions none
- Open Action Items none

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augus	t 29, 2000	Page 3

Significant Assessments

Orbiter

- Ku-Band Radiating Inside the EVA Box During STS-101
 - No ISS Hardware concern for STS-106
 - Ku-Band radiated RF power level in RF protect box does not pose a risk to EVA crewmembers or EMU
 - Power density from Ku-Band 15 GHz radiation is 30 mW/cm²
 - Ku-Band can not radiate for more than 0.03 minutes in RF protect box, more than a factor of ten below crew safety limits
 - The Instrumentation & Communications officer will manage the Ku-Band system by using stored program commands to preclude RF radiation while pointing into the RF protect box

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augus	t 29, 2000	Page 4

Significant Assessments

Orbiter (continued)

- RCC Panel #7 Found Damaged Post STS-101
 - Implemented corrective actions for gap filler installation prior to STS-106
 - Added position markings to aid in position verification
 - Certified technicians reinstalled and tested the RCC panels and replacement gap fillers
 - Tested and inspected surrounding structural hardware and is acceptable for flight
- Anti-Flood Valve Contamination Found Post STS-101
 - No risk of particle ignition impact from SSME operation
 - Any remaining contamination is too small to restrict flow through the flow control valves
 - No evidence of contamination on STS-106

SPACE SHUTTLE PROGRAM Space Shuttle SR&QA Office

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	ninger
Date Augus	st 29, 2000	Page 5

EVA

Significant Assessments

- Oil Contamination of the EMU Oxygen Systems
 - Cleaned all STS-106 Secondary Oxygen Pack (SOP) regulators prior to flight
 - Primary Life Support System (PLSS) testing demonstrates that ignition is highly improbable
 - Controls are in place to preclude future occurrences
 - SR&QA will issue a Safe ALERT when root cause is identified

<u>ET</u>

Weld Bead Dressing

- Sanding/shaving weld bead penetrant indications could result in unacceptable weld strength
- Discovered during NASA Engineering Quality Audit (NEQA)
- STS-106 welds meet initial weld properties with shaved beads
- Test and analysis demonstrate positive margins of safety for all welds

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augus	t 29, 2000	Page 6

Significant Assessments

<u>SRB</u>

- CDF Initiator Electrical Bond Check Not Performed
 - Initiators installed on STS-106 forward BSM and Nose Cap thrusters
 - Worst case failure effect is criticality 1, premature operation leading to loss of crew/vehicle
 - Rationale for Flight
 - To date 768 aft BSM CDF initiator installations have been checked and none have failed the electrical bonding requirement
 - Using statistical analysis, probability of achieving an electrical bond is 0.9991
 - The design and installation processing of the forward CDF initiators are the same as the aft BSM initiators
 - CDF initiator mating surfaces are metal to metal contact
 - Testing confirmed insensitivity to electrostatic discharge

Space Shuttle SR&QA Assessment

Presenter	M. D. Erminger	
Date Augus	t 29, 2000	Page 7

Significant Assessments

SRB (continued)

- Forward Skirt Range Safety System Transition Assembly Weld Anomaly
 - Suspect welds are not full penetration welds
 - Criticality 1 Loss of thermal protection resulting in debris generation and possible hot gas path to RSS cables
 - Welds are in a low stress area
 - Re-verified flight environment loads
 - Proofload tested assemblies from the same buy to worst case conditions

<u>SSME</u>

- Engine 0523 Mishap
 - Premature cutoff during a test at SSC was due to a violation of the High Pressure Fuel Turbine discharge temperature LCC
 - Failure analysis identified cause of shutdown to be "LOX Tape"
 - Used to cover open orifices during processing

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augus	t 29, 2000	Page 8

Significant Assessments

SSME (continued)

- Engine 0523 Mishap (continued)
 - Criticality 1 Failure Mode
 - Failure of HPFT/AT turbine blade airfoils could result in rotor imbalance and pump failure resulting in uncontained engine damage and loss of vehicle
 - To re-verify barrier removal, all joints where contamination barriers were used for STS-106 were identified and inspected
 - One joint, O2, LPOTP discharge duct to LPOTP, could not be inspected
 - Rationale for not opening joint O2 was approved by the SSP
 - No joint lapping during processing
 - Temporary closures used and vertical orientation makes FOD introduction difficult
 - Temporary closure prevents bolt installation
 - Joint easily inspected and verified during assembly
 - Joint passed bubble leak check and encapsulation test

ADDITIONAL ASSESSED ITEMS ARE IN THE BACKUP CHARTS

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augus	st 29, 2000	Page 9

NSRS Summary

There are no NASA Safety Reporting System reports open that are applicable to STS-106.

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augus	st 29, 2000	Page 10

Hazard Analysis Summary

There are no new Accepted Risk hazards identified for STS-106.

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augus	st 29, 2000	Page 11

FMEA/CIL Summary

Orbiter

Five failure modes associated with the landing gear circuit

- A one flight waiver to CIL submittal requirements has been approved by the PRCB to allow time to document new CIL failure modes
 - Two existing connector failure modes undocumented for MEDS configuration
 - Nose Landing Gear extension pyro assist circuit
 - Connector plug inadvertent demate, Criticality 1/1
 - Main Landing Gear down command circuit
 - Connector plug pin-to-pin short, Criticality 1/1
 - Risk assessment
 - Reliable connector design with robust test and inspection
 - Visual inspection of STS-106 confirmed connector mate and locking bayonets visible for the NLG extension pyro circuit
 - Exposure is less than one minute for the MLG pin-to-pin short and requires worst case flight profile

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger
Date Augus	t 29, 2000	Page 12

FMEA/CIL Summary

Orbiter

Five failure modes associated with the landing gear circuit (continued)

- Three new failure modes associated with the MLG down control circuit
 - One new relay short to structure failure mode for the MLG down control circuit
 - Latching relay prematurely closes deploying MLG as soon as "arm" command is set, Criticality 1/1
 - Two new diode failure modes, end to end short and short to structure for the MLG down control circuit
 - Blocking diode failures combine to disable the MLG extend valve (loss of hydraulic deploy), Criticality 1R3
 - Risk assessment
 - Reliable connector and diode design with robust test and inspection
 - No flight failure history

SPACE SHUTTLE PROGRAM Space Shuttle SR&QA Office

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inger	
Date Augus	t 29. 2000	Page 13	

STS-106 Readiness Statement

With the satisfactory completion of identified open work, Safety, Reliability, and Quality Assurance has no constraints to STS-106. SR&QA has no issues that constrain any of the mission success criteria.

/S/ J. H. Casper	/S/ Shannon Bartell		
SR&QA Director, JSC	Director, KSC Safety, Health and Independent Assessment		
/S/ A. H. Goodson	/S/ B. Higgins		
S&MA Director, MSFC	Chief, Shuttle S&MA, KSC		
/S/ M. D. Erminger	/S/ H. Davis		
SS SR&QA Manager	HEDS IA Director		

Space Shuttle SR&QA Assessment

M. D. Erminger

Date August 29, 2000 Page B-1

STS-106

Flight Readiness Review

Backup Package

Space Shuttle SR&QA Assessment

Presenter	M. D. Erminger		
Date August 29, 2000 Page B-2			

Additional Assessments

Orbiter/GFE

- First flight of Advanced Master Events Controller (AMEC)
- STS-101 Left Orbital Maneuvering System (OMS) Bi-propellant Valve Anomaly
- STS-101 Meds Multifunction Display Unit (MDU) Crt 1 And 2 Innocuous Events
- STS-101 Speedbrake Channel 3 Pressure Hesitation During FCS Checkout
- RMS MPM Stow Problem
- OV-102 Main Landing Gear (MLG) Bungee Rivet Failure
- OV-105 LP04 Oxidizer Tee Assembly Pinhole Leak
- Landing Gear Inadvertent Demate/hydraulics System 2 Nose Landing Gear Deploy
- OV-105 ODS Petal #2 Alignment Anomaly
- Improper Rigging Of Skygenie During Post Landing Egress Training
- OV-104 Left Orbital Maneuvering Engine (OME) Gimbal Actuator Noise
- Quality Control Cleaning Corporation Issue
- Night Crosswind Limit Expansion For Transatlantic Abort Landing (TAL) Sites
- Collins Tactical Air Navigation (TACAN) Concern
- OV-104 Liquid Hydrogen (LH2) Manifold Convolute Pinhole

Space Shuttle SR&QA Assessment

Presenter	M. D. Erminger		
Date August 29, 2000		Page	B-3

Additional Assessments

Orbiter/GFE (continued)

- Main Hydraulic Pump Depressurization Piston Cap Bolt Configuration
- Launch Window Management
- NSTS 8080-1 Waiver, Standard 134, Electrical Power Distribution Circuits Overload Protection For The Orbiter Space Vision Unit (OSVU)
- MPS Fill And Drain Valve Loose Shim
- CRES/IRED Acceptance Rationale

<u>ET</u>

- Aft Fairing Closeout
- Thrust panel penetrant inspection

<u>SSME</u>

- HPOTP/AT Joint G3 Blistered Seal
- QCCC Cleaning Issues
- Anti-Flood Valve Contamination

Space Shuttle SR&QA Assessment

Presenter	M. D. Erm	inge	r
Date Augus	st 29, 2000	Page	B-4

Additional Assessments

<u>RSRM</u>

- First Flight / Critical Process Change
 - Case Buckling Certification
 - Elimination of Requirement to Weekly Verify Sodium Tripolyphosphate Concentration (STTP)
- Corrective Actions for Nozzle Pocketing Erosion
- STS-101 Ignition S&A Device Damaged A-M Motor Armature
- Suspect Paraffin and Silicone Contamination of Flight Hardware
- S&A Barrier Booster Basket Pellet Contamination

<u>SRB</u>

- Drogue Parachute Reefing Line Cutter Shelf Life Expiration
- SWAR Batteries Shelf Life
- STS-101 APU Gear Box Lube Oil Contamination
- Rate gyro assembly (RGA) maintenance requirements not performed
- CDF initiator bond check not performed

Launch & Landing

Wire Crimping Issue